Step of Proof: dec_iff_ex_bvfun
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
dec
iff
ex
bvfun
:
1.
T
: Type
2.
E
:
T
T
3.
x
,
y
:
T
. Dec(
E
(
x
,
y
))
f
:
T
T
. (
x
,
y
:
T
. (
(
f
(
x
,
y
)))
(
E
(
x
,
y
)))
latex
by ((((((RenameVar `g' 3)
CollapseTHENM (Unfold `decidable` 3))
)
CollapseTHENM (((With
x
,
y
.
C
case
g
(
x
,
y
) of inl(
a
) => tt | inr(
b
) => ff (D 0))
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
))
)
CollapseTHENM (Reduce 0))
C
latex
C
1
:
C1:
3.
g
:
x
,
y
:
T
. (
E
(
x
,
y
))
(
(
E
(
x
,
y
)))
C1:
x
,
y
:
T
. (
case
g
(
x
,
y
) of inl(
a
) => tt | inr(
b
) => ff)
(
E
(
x
,
y
))
C
.
Definitions
P
Q
,
P
Q
,
P
&
Q
,
t
T
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
x
:
A
.
B
(
x
)
,
,
Dec(
P
)
Lemmas
assert
wf
,
iff
wf
,
bfalse
wf
,
btrue
wf
,
not
wf
origin